6 Conclusão

Neste trabalho, foram fornecidos métodos eficientes para a aplicação da regressão por mínimos quadrados parciais em diversas áreas além da originária, a quimiometria. Para tanto, foram incorporados ao algoritmo de regressão PLS1 paralelismo e métodos diretos para o caso PLS2, procurando o tratamento de grandes massas de dados. Para o aumento do poder preditivo, foi acoplada também não-linearidade de forma eficiente via funções de núcleo.

6.1 Principais resultados

Num primeiro passo, a arquitetura de modelos competidores MEM [33, 32] demonstra a pertinência da regressão PLS pela simplicidade e qualidade apresentadas. Além disto, o uso da transformada Haar de wavelets, por fornecer uma representação do perfil do padrão, permitiu uma melhor partição do espaço de amostras.

Para o tratamento de grandes conjuntos de dados, foram desenvolvidos dois algoritmos. O primeiro é o PPLS [37, 41, 40], uma versão paralela para o caso PLS1 de uma variável dependente. Dentre suas principais características destacamos:

- 1. fácil implementação com baixo custo;
- 2. bom desempenho, com um aproveitamento de 75% de cada processador ao serem usadas 4 máquinas.

O segundo algoritmo apresentado é o DPLS [37, 41, 36], uma versão aproximada para o caso PLS2 de mais de uma variável dependente, possuindo os seguintes atributos:

1. curva PRESS semelhante à do método exato, mostrando qualidade de predição competitiva;

2. ganho acima de 40% no desempenho computacional.

O aumento significativo de desempenho conseguido faz dos dois algoritmos candidatos para o tratamento de grandes conjuntos de dados. DPLS fornece um método direto para a construção de modelos preditivos, enquanto PPLS explora a natureza distribuída da entrada, para paralelizar de forma eficiente o cálculo dos fatores PLS.

O uso de funções de núcleo permitiu a incorporação de não-linearidade. Isto foi realizado de forma eficiente, pois características não lineares das variáveis independentes foram adicionadas à entrada de forma implícita, não aumentando a complexidade computacional.

A primeira contribuição é LPLS, uma versão do algoritmo PLS1, que em relação à versões existentes [46] apresenta

- 1. maior eficiência computacional, pois explora a particularidade de apenas uma variável dependente;
- 2. um algoritmo iterativo para a predição, não apresentando problemas de estabilidade numérica;
- 3. representação clássica do PLS1, com os escores não normalizados.

Seguindo a mesma linha da versão linear, é fornecido KDPLS, uma versão *kernel* para o algoritmo PLS2 aproximado DPLS. Nos experimentos, as mesmas características foram observadas: qualidade competitiva e melhor desempenho computacional.

A terceira contribuição utilizando funções de núcleo, é o MKPLS, que estende os algoritmos kernel existentes, empregando mais de um núcleo para a construção do modelo não-linear. Isto é realizado empregando uma função de núcleo para os primeiros fatores, e uma segunda para os demais. Dentre os principais atributos, são destacados:

- 1. modelagem mais compacta, pois possui mesma taxa de aprendizado do PLS para os primeiros fatores;
- 2. poder preditivo competitivo quando comparado com o LPLS;
- 3. demonstra, em certos casos, que a modelagem linear para os primeiros fatores fornece melhor predição para os demais não-lineares;
- 4. possui desempenho no mínimo equivalente ao de outros modelos.

Com isto, o MKPLS pode ser considerado uma alternativa aos algoritmos para regressão PLS baseados em funções de núcleo.

6.2 Trabalhos Futuros

No decorrer do desenvolvimento dos algoritmos aqui apresentados, alguns pontos levantados merecem maior atenção, em trabalho ainda a ser realizado.

Com relação ao PPLS, uma implementação em arquitetura de memória compartilhada deve fornecer melhor desempenho.

Quanto ao DPLS, a mesma abordagem aproximada, de decomposição em blocos, pode ser usada para a análise em componentes principais. Seria interessante analisar a estabilidade dos resultados, juntamente com o ganho em desempenho computacional.

Para o LPLS, a implementação de uma versão PLS2 resolvendo o caso geral da equação 5-11, fornecendo uma versão não-linear do algoritmo clássico, para comparação com [46]. Além disto, uma heurística para a escolha do núcleo com seus ajustes, forneceria um método eficiente para a calibração do modelo.

A elaboração da versão multi-núcleos MKPLS levou ao aumento do número de parâmetros no treinamento, acarretando nas seguintes considerações:

- 1. observar desempenho com dois núcleos não aditivos, ou seja, sem que $K_2 = K_1 + K$;
- 2. explorar possível benefício ao se usar mais de dois núcleos, já que isto pode ser realizado com os algoritmos para desconto apresentados;
- 3. medir o desempenho em conjuntos provenientes de outras áreas além da química [24];
- a estratégia multi-núcleos desenvolvida para o MKPLS, deve se aplicar com o mesmo sucesso aos outros métodos de regressão parcial, como o PCR [45].

Dado que o objetivo é mostrar a viabilidade da estratégia multi-núcleos, não foi realizada nenhuma filtragem adicional nos dados para remoção de possíveis dados espúrios. Além disto, dada a origem do PLS, o conjunto NIR possui dados com população reduzida, sendo de no máximo 282 amostras. A aplicação de técnicas de filtragem, além do uso de conjuntos de maior tamanho, devem fornecer predições melhores e mais estáveis.